subspace

A subspace of a vector space VV is a subset HH of VV that has two properties.

  1. HH is closed under vector addition. That is, for each uu and vv in HH, the sum u+vu+v is in HH.
  2. HH is closed under multiplication by scalars. That is, for each uu in HH and each scalar cc, the vector cucu is in HH.

Note

In some materials, HH has the third property that The zero vector of VV is in HH. This property could be inclued in Property 2 while c=0c=0.

For example,

  • A line through the origin in R2R^2 is a subspace.

  • The xyxy-plane in R3R^3 is a subspace.

  • The set of all polynomials PP is a subspace of C[0,1]C[0,1].

Proof

如何证明一个空间是subspace?

只需要根据定义,将该空间的向量 x,yx, y 代入两个条件验证即可。

Span

Span(线性生成空间)is the set of all linear combination of specialized vectors.

For example,

span(v1,v2,...vn)={i=1nαiviαi}span(v_1, v_2, ... v_n) = \{ \sum_{i=1}^{n}\alpha_iv_i|\alpha_i \in \Re \}

Means span(v1,v2,...vnv_1, v_2, ... v_n) is generated / spanned by v1,v2,...vnv_1, v_2, ... v_n.

Theorem

span(v1,v2,...vnv_1, v_2, ... v_n) is a subspace of VV.

Null space

Given a matrix Am×nA \in \Re^{m \times n}. The null space or kernel of AA is defined as

NulA=KerA={xnAx=0}Nul A = Ker A = \{ x \in \Re^n | Ax = 0\}

Column space

Given a matrix Am×nA \in \Re^{m \times n}. The column space or image of AA is defined as the set of all linear combination of the colums of AA.

colA=ImA={bmb=Axforsomexn}col A = ImA=\{b \in \Re^m | b = Ax \quad \mathrm{for \quad some} \quad x \in \Re^n\}

Computation

But how to compute the null space and column space of a speified matrix?

For example,

A=[12132349072351822835]A = \begin{bmatrix} 1 \quad 2 \quad 1 \quad 3 \quad 2 \\ 3 \quad 4 \quad 9 \quad 0 \quad 7 \\ 2 \quad 3 \quad 5 \quad 1 \quad 8 \\ 2 \quad 2 \quad 8 \quad -3 \quad 5 \end{bmatrix}

how to get Nul(A)Nul(A) and Col(A)Col(A)?

Answer

Convert matrix AA to the row minimal matrix. The specific calculation process is omitted here.

A=>[10708501303100017]A=> \begin{bmatrix} 1 \quad 0 \quad 7 \quad 0 \quad 85 \\ 0 \quad 1 \quad -3 \quad 0 \quad 31 \\ 0 \quad 0 \quad 0 \quad 1 \quad -7 \\ \end{bmatrix}

We know that the pivot number represents the location of dependent variables and the remaining variables are called free variables. In this row minimal matrix, the pivot numbers are 1, 2, 4.(非零行的第一个非零元所在的位置)Hence we could get two basis of the vector space:

ξ1=[x1y10z11]ξ2=[x2y21z20]\xi_1 = \begin{bmatrix} x_1 \\ y_1 \\ 0 \\ z_1 \\ 1 \end{bmatrix} \quad \xi_2 = \begin{bmatrix} x_2 \\ y_2 \\ 1 \\ z_2 \\ 0 \end{bmatrix}

let Aξ1=0A\xi_1 = 0 and Aξ2=0A\xi_2 = 0, we get the values of x,y,zx, y, z respectively.

ξ1=[8531071]ξ2=[73100]\xi_1 = \begin{bmatrix} -85 \\ -31 \\ 0 \\ 7 \\ 1 \end{bmatrix} \quad \xi_2 = \begin{bmatrix} -7 \\ 3 \\ 1 \\ 0 \\ 0 \end{bmatrix}

Null space

Use the basis to represent null space

NulA=span{ξ1,ξ2}\mathrm{Nul}A = \mathrm{span}\{\xi_1, \xi_2\}

Column space

After we get pivot number, we get the column space as well since column space consists of the column vectors of pivot number in AA.

ColA=span{[1322],[2432],[3013]}\mathrm{Col}A=\mathrm{span}\{ \begin{bmatrix} 1 \\ 3 \\ 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 4 \\ 3 \\ 2 \end{bmatrix}, \begin{bmatrix} 3 \\ 0 \\ 1 \\ -3 \end{bmatrix} \}

References